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Abstract 

A multi-objective optimization framework based on modal data is presented for finite element model 
updating in structural dynamics. The framework results in multiple Pareto optimal structural models that 
are consistent with the measured data and the norms used for reconciling finite element models with data. 
Computationally efficient methods for estimating the gradients and Hessians of the objective functions with 
respect to the model parameters are proposed and shown to significantly reduce the computational effort for 
solving the single or multi-objective optimization problems. Theoretical and computational developments 
are addressed and demonstrated by updating the finite element model of a concrete bridge structure using 
modal data identified from ambient acceleration time history measurements. The results clearly indicate 
that there is wide variety of Pareto optimal structural models that trade off the fit in various measured 
quantities. The variability in Pareto models affect the variability in response predictions. 

Introduction 

Structural model updating methods have been proposed in the past to reconcile 
mathematical models, usually finite element models, with experimental data. The 
estimate of the optimal model from a class of models is sensitive to uncertainties that are 
due to limitations of the mathematical models used to represent the behavior of the real 
structure, the presence of measurement error in the data, the number and type of 
measured data used in the reconciling process, as well as the norms used to measure the 
fit between measured and model predicted characteristics. The optimal structural models 
resulting from such methods can be used for improving the model response and reliability 
predictions (Papadimitriou et al. 2001). 
 
Structural model parameter estimation problems based on measured data, such as modal 
characteristics (e.g. Fritzen et al. 1998; Teughels and De Roeck 2005) or response time 
histories (Beck and Katafygiotis 1998), are often formulated as weighted least-squares 
problems in which metrics, measuring the residuals between measured and model 
predicted characteristics, are build up into a single weighted residuals metric formed as a 
weighted average of the multiple individual metrics using weighting factors. Standard 
optimization techniques are then used to find the optimal values of the structural 
parameters that minimize the single weighted residuals metric representing an overall 
measure of fit between measured and model predicted characteristics. Due to model error 
and measurement noise, the results of the optimization are affected by the values assumed 
for the weighting factors. The model updating problem has also been formulated in a 
multi-objective context (Christodoulou and Papadimitriou 2007) that allows the 
simultaneous minimization of the multiple metrics, eliminating the need for using 
arbitrary weighting factors for weighting the relative importance of each metric in the 
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overall measure of fit. The multi-objective parameter estimation methodology provides 
multiple Pareto optimal structural models consistent with the data and the residuals used. 
 
In this work, the structural model updating problem using modal residuals is formulated 
as a multi-objective optimization problem and as a single-objective optimization with the 
objective formed as a weighted average of the multiple objectives using weighting 
factors. Theoretical and computational issues arising in multi-objective identification are 
addressed and the correspondence between the multi-objective identification and the 
weighted residuals identification is established. In addition, computational issues 
associated with solving the resulting multi-objective and single-objective optimization 
problems are addressed. Computationally efficient algorithms for estimating the gradients 
and Hessians of the objective functions are proposed and shown to significantly reduce 
the computational effort and the number of iterations required for convergence.  

Model Updating Based on Modal Residuals 

Let 0ˆˆ{ , ,  1, , }N
r rD R rω φ= ∈ = m  be the measured modal data from a structure, 

consisting of modal frequencies ˆrω  and modeshape components 0ˆ N
r Rφ ∈  at 0  

measured DOFs, where m  is the number of observed modes. Consider a parameterized 
class of linear structural models used to model the dynamic behavior of the structure and 
let 

N

NR θθ ∈  be the set of free structural model parameters to be identified using the 
measured modal data. The objective in a modal-based structural identification 
methodology is to estimate the values of the parameter set θ  so that the modal data 
{ ( ),  ( ) , 1, , }dNR r mω θ φ θ ∈ =r r , where d  is the number of model degrees of freedom 
(DOF), predicted by the linear class of models best matches, in some sense, the 
experimentally obtained modal data in . For this, let  
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1, ,r = m , be the measures of fit or residuals between the measured modal data and the 
model predicted modal data for the -th modal frequency and modeshape components, 
respectively, where 

r
2 T|| ||z z= z  is the usual Euclidian norm, and 

2ˆ /T
r r r rL Lβ φ φ φ=  is a 

normalization constant that guaranties that the measured modeshape r̂φ  at the measured 
DOFs is closest to the model modeshape ( )r rLβ φ θ  predicted by the particular value of 
θ . The matrix  is an observation matrix comprised of zeros and ones that 
maps the  model DOFs to the  observed DOFs. 

0 dN NL R ×∈
dN 0N

 
The measured modal properties are grouped into  groups. Each group contains one or 
more modal properties. The modal properties assigned in the -th group are identified by 
the set ,  and 

n
i

( )ig k 1, ,i n= 1, 2k = , with any element in the set  is an integer 
from 1 to . The elements in the set  with 

( )ig k
m ( )ig k 1k =  refer to the number of the 

measured modal frequency assigned in the group i , while the elements of the set  
with  refer to the number of the measured modeshape assigned in the group i . For 
the th group, a norm 

( )ig k
2k =

i ( )iJ θ  is introduced to measure the residuals of the difference 
between the measured values of the modal properties involved in the group and the 
corresponding modal values predicted from the model class for a particular value of the 
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parameter set θ . The measure of fit in a modal group is the sum of the individual square 
errors in (1) for the corresponding modal properties involved in the modal group. 
Specifically, the measure of fit is given by 

 2 2

(1) (2)

ˆˆ( ) ( , ) ( , )
i i

i r r
r g r g

J r re Lθ ε ω ω φ φ
∈ ∈

= +∑ ∑  (2) 

The grouping of the modal properties { ( ),  ( ), 1, , }r r r mω θ φ θ =  into n  groups and the 
selection of the measures of fit (residuals) 1( ), , ( )nJ Jθ θ  are usually based on user 
preference. The modal properties assigned to each group are selected by the user 
according to their type and the purpose of the analysis. The aforementioned analysis 
accommodates general grouping schemes and objective functions. A specific grouping 
scheme is to assume two groups, n= . The first group contains only modal frequencies 
and the second group contains only modeshapes, i.e. 

2
{ }1(1) 1, ,g n= … , { }2 (2) 1, ,g n= …  

while  and  are empty sets. 1(2)g 2 (1)g

Multi-Objective Identification  

The problem of identifying the model parameter values that minimize the modal or 
response time history residuals can be formulated as a multi-objective optimization 
problem stated as follows (Haralampidis et al. 2005). Find the values of the structural 
parameter set θ  that simultaneously minimizes the objectives 

 1( ) ( ( ), , ( ))ny J J Jθ θ= = θ  (3) 

For conflicting objectives 1( ), , ( )nJ Jθ θ , there is no single optimal solution, but rather a 
set of alternative solutions, known as Pareto optimal solutions, that are optimal in the 
sense that no other solutions in the parameter space are superior to them when all 
objectives are considered. The multiple Pareto optimal solutions are due to modeling and 
measurement errors.  

Weighted Modal Residuals Identification  

The parameter estimation problem is also solved by minimizing the single objective 

 
1

( ; ) ( )
n

i i
i

J w w Jθ θ
=

= ∑  (4) 

formed from the multiple objectives ( )iJ θ  using the weighting factors , , 
with 

1i=
. The objective function 

0iw ≥ 1, ,i n=
1i

n w =∑ ( ; )J wθ  represents an overall measure of fit 
between the measured and the model predicted characteristics. The relative importance of 
the residual errors in the selection of the optimal model is reflected in the choice of the 
weights. The results of the identification depend on the weight values used. It can be 
readily shown that the optimal solution to the problem is one of the Pareto optimal 
solutions. Conventional weighted least squares methods assume equal weight values, 

1 . This conventional method is referred herein as the equally weighted 
method.  

1/nw w= = = n
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Computational Issues Related to Model Updating Formulations 

The proposed single and multi-objective identification problems are solved using 
available single and multi objective optimization algorithms. The optimization of ( ; )J wθ  
in (4) with respect to θ  for given w  can readily be carried out numerically using any 
available algorithm for optimizing a nonlinear function of several variables. These single 
objective optimization problems may involve multiple local/global optima. A hybrid 
optimization algorithm that exploits the advantages of Evolution Strategies (ES) and 
gradient-based methods has been developed to detect the neighborhood of the global 
optimum and then using gradient information to accelerate convergence to the global 
optimum (Christodoulou and Papadimitriou 2007). 
 
The set of Pareto optimal solutions can be obtained using available multi-objective 
optimization algorithms. The Normal-Boundary Intersection (NBI) method (Das and 
Dennis 1998) is a very efficient algorithm for solving the multi-objective optimization 
problem. It produces an evenly spread of points along the Pareto front, even for problems 
for which the relative scaling of the objectives are vastly different. The NBI optimization 
method involves the solution of constrained nonlinear optimization problems using 
available gradient-based constrained optimization methods. The NBI uses the gradient 
information to accelerate convergence to the Pareto front.  

Gradient and Hessian Computations 

In order to guarantee the convergence of the gradient-based optimization methods for 
structural models involving a large number of DOFs with several contributing modes, the 
gradient of the objective function with respect to the parameter set θ  has to be estimated 
accurately. It has been observed that numerical algorithms such as finite difference 
methods for gradient evaluation does not guarantee convergence Moreover, gradient 
computations with respect to the parameter set using the finite difference method requires 
the solution of as many eigenvalue problems as the number of parameters.  
 
Analytical expressions for the gradient of the modal frequencies and modeshapes can be 
used to overcome the convergence problems. In particular, Nelson’s method (Nelson 
1978) is used for computing analytically the first derivatives of the eigenvalues and the 
eigenvectors. The advantage of the Nelson’s method compared to other methods is that 
the gradient of eigenvalue and the eigenvector of one mode are computed from the 
eigenvalue and the eigenvector of the same mode and there is no need to know the 
eigenvalues and the eigenvectors from other modes. For each parameter in the set θ  this 
computation is performed by solving a linear system of the same size as the original 
system mass and stiffness matrices. Nelson’s method has also been extended in this work 
to compute the second derivatives of the eigenvalues and the eigenvectors.  
 
Finally, the computation of the gradients and the Hessian of the objective functions is 
shown to involve the solution of a single linear system, instead of Nθ  linear systems 
required in usual computations of the gradient and ( )1N Nθ θ +  linear systems required in 
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the computation of the Hessian. This reduces considerably the computational time, 
especially as the number of parameters in the set θ  increase. The expressions for the first 
and second derivatives of the objective functions are next presented. Due to space 
limitations details of the deviations are not shown.  
 
The gradient of square errors 2 ( )

rω
ε θ  and 2 ( )

rφ
ε θ  involved in objectives (2) are given by 
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where 2
, ( )(T

r j r r j r j rF I M K M )φ φ ω= − − − φ  and rx  is given by the solution of the linear 
system  
 *

r r rA X D=  (7) 

with ( ) 2ˆ ˆ2T
r r r r rD L L /β β φ φ φ= −  and rX  replaced by rx . For notational convenience, 

the dependence of several variables on the parameter set θ  has been dropped. For an 
 matrix n n× 2

r rA K Mω= − , *
rA  is used to denote the modified matrix derived from r  

by replacing the elements of the -th column and the -th row by zeroes and the ( , ) 
element of r  by one, where  denotes the element of the modeshape vector 

A
k k k k

A k rφ  with the 
highest absolute value.  Also, the  vector n *

rb  is used to denote the modified vector 
derived from rb  by replacing the -th element of the vector k rb  by zero. Also, jK  and 

jM  in the formulation denote the quantities jK θ∂ ∂  and jM θ∂ ∂  that can be obtained 
either analytically or numerically using finite element methods. 
 
Similarly, it can be shown that the ( ,  element of the Hessian of )i j 2 ( )

rω
ε θ  and 2 ( )

rϕ
ε θ  can 

be adequately approximated in the form (assuming that 0jM = ) 
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where rz  is given by the solution of the linear system (7) with 
( ) ( )ˆ2T T T

r r r r r rD I M L Lφ φ β φ φ= − − r and X  is given by (7) with ( )T T
r rD I M Lφ φ= − T

r . 

It is clear that the computation of the first and second derivatives of the square errors for 
the modal properties of the -th mode with respect to the parameters in r θ  requires only 
the solutions of the linear system (7), independent of the number of parameters in θ . For 
a large number of parameters in the set θ , the above formulation for the gradients and 
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Hessian of the mean errors in modal frequencies and in the modeshape components in (1) 
are computationally very efficient and informative. 

Application 

The proposed framework is applied to a R/C bridge (Figure 1a) of Egnatia Odos 
motorway. The response to ambient excitation caused by traffic and wind has been 
systematically monitored using an array of 24 accelerometers. Available modal 
identification methods are used to identify the modes by processing the ambient 
vibrations. To implement the model updating techniques, an appropriate parametric finite 
element model of the bridge is considered using three-dimensional two-node beam-type 
finite elements to model the deck, the piers and the bearings. This model is shown in 
Figure 1b and has 1038 degrees of freedom. A three parameter model class is employed 
with 1  accounting for the stiffness of the elastomeric bearings at the abutments, 2θ  
accounting for the stiffness of the deck, and 3θ  accounting for the stiffness of the piers. 
The model class is updated using the three modal frequencies and modeshapes and two 
modal groups, the first containing the modal frequencies and the second one the 
modeshapes. 

θ

 

   
Figure 1. (a) View of the Polymilos bridge, (b) Finite element model. 

The results from the multi-objective identification methodology are shown in Figure 2, 
along with the single solution obtained using the equally weighted method (EWM). For 
each model class and associated structural configuration, the Pareto front, giving the 
Pareto solutions in the two-dimensional objective space, is shown in Figure 2a. The non-
zero size of the Pareto front and the non-zero distance of the Pareto front from the origin 
are due to modeling and measurement errors. Specifically, the distance of the Pareto 
points along the Pareto front from the origin is an indication of the size of the overall 
measurement and modeling error. The size of the Pareto front depends on the size of the 
model error and the sensitivity of the modal properties to the parameter values θ  
(Christodoulou and Papadimitriou 2007). Figure 2b show the corresponding Pareto 
optimal solutions in the two-dimensional parameter space 1 2( , )θ θ . It is observed that a 
wide variety of Pareto optimal solutions are obtained for different structural 
configurations that are consistent with the measured data and the objective functions 
used. The Pareto optimal solutions are concentrated along a one-dimensional manifold in 
the three-dimensional parameter space. All Pareto solutions correspond to acceptable 
compromise structural models trading-off the fit in the modal frequencies involved in the 
first modal group with the fit in the modeshape components involved in the second modal 
groups. The identified variability in Pareto optimal solutions has demonstrated by 
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Christodoulou and Papadimitriou (2007) to considerably affect the variability in the 
response predictions. 
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Figure 2. Pareto front and Pareto optimal solutions in the (a) objective space and (b) 

parameter space 1 2( , )θ θ  

Conclusions 

Computationally efficient model updating algorithms were developed to compute all 
Pareto optimal structural models consistent with the measured data and the norms used to 
measure the fit between the measured and model predicted modal properties. Application 
on a R/C bridge demonstrated that a wide variety of Pareto optimal structural models 
consistent with the measured modal data can be obtained. The variability in the Pareto 
optimal models is due to the model and measurement error. The large variability in the 
Pareto optimal models results in large variability in the response and structural reliability 
predictions.  

Acknowledgements 

This research was co-funded 75% from the European Union (European Social Fund), 25% from the Greek 
Ministry of Development (General Secretariat of Research and Technology) and from the private sector, in 
the context of measure 8.3 of the Operational Program Competitiveness (3rd Community Support 
Framework Program) under grant 03-ΕΔ-524 (PENED 2003). This support is gratefully acknowledged. 

References 

Beck, J.L. and L.S. Katafygiotis (1998), “Updating models and their uncertainties- I: Bayesian statistical 
framework,” Journal of Engineering Mechanics (ASCE), 124, 455-461. 

Christodoulou, K. and C. Papadimitriou (2007), “Structural Identification Based on Optimally Weighted 
Modal Residuals,” Mechanical Systems and Signal Processing, 21, 4-23.  

Das, I. and J.E. Jr. Dennis (1998), “Normal-Boundary Intersection: A new method for  generating the 
Pareto surface in nonlinear multi-criteria optimization problems,” SIAM Journal of Optimization, 8, 
631-657. 

Fritzen, C.P., D. Jennewein, and T. Kiefer (1998), “Damage detection based on model updating methods,” 
Mechanical Systems and Signal Processing, 12(1), 163-186.  

Nelson, R.B. (1976), “Simplified calculation of eigenvector derivatives”, AIAA Journal 14(9), 1201-1205.  

Papadimitriou, C., J.L. Beck, and L.S. Katafygiotis (2001), “Updating robust reliability using structural test 
data,” Probabilistic Engineering Mechanics, 16, 103-113. 

Teughels, A. and G. De Roeck (2005), “Damage detection and parameter identification by finite element 
model updating,” Archives of Computational Methods in Engineering, 12(2), 123-164.  


	Abstract
	Introduction
	Model Updating Based on Modal Residuals
	Computational Issues Related to Model Updating Formulations
	Gradient and Hessian Computations
	Application
	Conclusions
	Acknowledgements
	References

